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Abstract
Purpose – In many real-life situations, we do not know the exact values of the expected gain corresponding
to different possible actions, we only have lower and upper bounds on these gains – i.e., in effect, intervals of
possible gain values. The purpose of this study is to describe all possible ways to make decisions under such
interval uncertainty.

Design/methodology/approach – The authors used both natural invariance and additivity requirements.

Findings – The authors demonstrated that natural requirements – invariance or additivity – led to a two-
parametric family of possible decision-making strategies.

Originality/value – This is a first description of all reasonable strategies for decision-making under
interval uncertainty – strategies that satisfy natural requirements of invariance or additivity.
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1. Formulation of the problem
Decision-making: a brief reminder. In many real-life situations, we need to select an
appropriate action. In economics, a reasonable idea is to select an action that leads to the
largest values of the expected gain; e.g. Fishburn (1969), Luce and Raiffa (1989), Raiffa
(1997), Nguyen et al. (2009) and Kreinovich (2014). In this manner, if we repeatedly make
such a selection, then, because of the law of large numbers, we will obtain the largest
possible gain.
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Need to consider uncertainty. In practice, we often cannot predict the exact consequence
of each possible action. Consequently, for each action a rather than the exact value ua of the
expected gain, we only know the interval ua; ua½ � of possible gain values.

Comment. It is often convenient to represent this interval in the equivalent form as
~ua � Da; ~ua þ Da½ �, where:

~ua ¼ ua þ ua

2
and Da ¼ ua � ua

2
:

How do you make decisions under interval uncertainty. How can we make decisions under
such interval uncertainty? In other words, when can we decide that Action 1 is better than
Action 2? In general, we have three possible cases.

Sometimes, we can guarantee that Action 1 is better than Action 2. This happens if every
value u1 from the interval u1; u1½ � is larger than or equal to every value u2 from the interval
u2; u2½ �. One can easily verify that this is equivalent to requiring that the smallest possible
value u1 from the interval u1; u1½ � is larger than or equal to the largest possible value u2
from the interval u2; u2½ �, i.e.:

u1 # u2:

Sometimes, we can guarantee that Action 2 is better than Action 1, i.e., every value u2 from
the interval u2; u2½ � is larger than or equal to every value u1 from the interval u1; u1½ �.
Similar to the previous case, we can conclude that this condition is equivalent to:

u1 # u2:

In all other cases, i.e., when

u2 < u1 and u1 < u2;

we cannot make a guaranteed conclusion. In such cases, Action 1 is better, and it can be that
Action 2 is better.

So which action should we select? In situations in which we can guarantee that one of the
actions if better, this better action is the one we should select. However, what if we are in the
situation when no such guarantee is possible?Which action should we then recommend?

This is a question that we consider in this study.
Comment. It is not necessary to provide recommendation for all the cases; however, we

would like to be able to provide recommendation for at least some of the cases.

2. Analysis of the problem
What do we want.Wewant to be able, for some intervals u1; u1½ � and u2; u2½ �, to say that the
second interval is better (or of the same quality). We will denote this relation by the usual
inequality sign:

u1; u1½ � # u2; u2½ �:

What are the natural requirements on this relation?
First natural requirement: transitivity. If Action 2 is better than (or of the same quality as)

Action 1, and Action 3 is better than (or of the same quality as) Action 2, then we should be
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able to conclude that Action 3 is better than (or of the same quality as) Action 1, i.e., the
relation# on the class of all intervals should be transitive:

if u1; u1½ �# u2; u2½ � and u2; u2½ �# u3; u3½ �; then u1; u1½ �# u3; u3½ �: (1)

Second natural requirement: reflexivity. Each interval has the same quality as itself.
Therefore, for every interval u; u½ �, we should have:

u; u½ �# u; u½ �: (2)

Third natural requirement: consistency with common sense. It is reasonable to require that if
Action 2 is guaranteed to be better than Action 1, then we will still select Action 2:

if u1#u2; then u1; u1½ �# u2; u2½ �: (3)

Fourth natural requirement: scale-invariance. If we multiply all gains by the same positive
constant c > 0, then whichever gain was larger remains larger, and whichever gain was
smaller remains smaller. This multiplication corresponds to switching from the original
currency to the one that is c times smaller: the mere change of currency should not change
which action is better. Therefore, it is reasonable to require that a similar change of currency
should not affect decision-making under uncertainty either, i.e.:

if u1; u1½ �# u2; u2½ � then c � u1; c � u1½ �# c � u2; c � u2½ �: (4)

Fifth natural requirement: additivity. If we add the same amount to two gains, this will not
change which gain is larger. Similarly, if we add the same interval-valued gain c; c½ � to the
gains of both actions, this should not change which action was better.

If we have two independent situations, in one of which the gain can be anything from
ui to ui and in the second one anything from c to c, then the smallest possible value of
the overall gain is when both gains are the smallest: when we have ui þ c and the
largest possible value of the overall gain is when both gains are the largest, i.e. when we
have ui þ c.

Thus, the abovementioned requirement takes the following form:

u1; u1½ �# u2; u2½ � if and only if u1 þ c; u1 þ c½ �# u2 þ c; u2 þ c½ �: (5)

Final natural requirement: closeness. When the values of u and u are close, the
corresponding alternatives are practically indistinguishable. Thus, it is reasonable to

require that if we have two sequences of intervals u nð Þ
1 ; u nð Þ

1

h i
and u nð Þ

2 ; u nð Þ
2

h i
for which

u nð Þ
1 ; u nð Þ

1

h i
# u nð Þ

2 ; u nð Þ
2

h i
, and endpoints of both intervals tends to some limits, then because

the limit intervals are indistinguishable from these one for sufficiently large n, we should
expect the same relation# for the limit intervals:

if u1
nð Þ; u nð Þ

1

h i
# u2

nð Þ; u nð Þ
2

h i
for all n; and u

i
nð Þ ! ui and u nð Þ

i ! ui;

then u1; u1½ �# u2; u2½ �: (6)

Now, we are ready to formulate our primary result.
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3. Definitions and the main result
Definition

� We say that a binary relation # on the set of all intervals is transitive if it satisfies
the condition (1).

� We say that a binary relation# on the set of all intervals is reflexive if it satisfies the
condition (2).

� We say that a binary relation# on the set of all intervals is consistent with common
sense if it satisfies the condition (3).

� We say that a binary relation # on the set of all intervals is scale-invariant if it
satisfies the condition (4).

� We say that a binary relation# on the set of all intervals is additive if it satisfies the
condition (5).

� We say that a binary relation # on the set of all intervals is closed if it satisfies the
condition (6).

Proposition. For a binary relation # on the set of all intervals, the following two conditions
are equivalent to each other:

� the relation is transitive, reflexive, consistent with common sense, scale-invariant,
additive and closed;

� for some values a� and aþ for which �1#a�#aþ# 1, the relation # has the
following form: ~u1 � D1; ~u1 þ D1½ �# ~u2 � D2; ~u2 þ D2½ � if and only if either:

D1#D2 and ~u1 þ a� � D1# ~u2 þ a� � D2

or

D2#D1 and ~u1 þ aþ � D1# ~u2 þ aþ � D2:

Comments.

� The only case when we have a linear order, i.e. when for every two intervals u1; u1½ �
and u2; u2½ �, we have either u1; u1½ �# u2; u2½ � or u2; u2½ �# u1; u1½ �, is when
a� ¼ aþ. In this case, we obtain the known Hurwicz criterion for decision-making,
e.g., Hurwicz (1951), Luce and Raiffa (1989) and Kreinovich (2014).

� Relations described in the proposition were first considered in (Stefanini et al., 2019a) and
(Stefanini et al., 2019b); however, with an additional requirement that u1; u1½ �# u2; u2½ �
implies ~u1# ~u2. This requirement is not always satisfied; see, e.g. fora� ¼ aþ ¼ 1, when

u1; u1½ �# u2; u2½ � if and only if u1#u2;

we have [1,1] # [–2,2]. However, for the midpoints ~ui of these intervals, the opposite
inequality is true: 1> 0.

4. Proof
(1) It is straightforward to confirm that every relation of the above form satisfies

conditions (1)-(6). So, to complete the proof, it is sufficient to prove that if a relation
satisfies the conditions (1)-(6), then it has the desired form.
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(2) Let us first analyze how the interval [�1,1] compares with different real values u
(i.e., with degenerate intervals [u,u]).
� Because of consistency with common sense, we have u# �1; 1½ � when u# � 1.

Let us denote a� ¼def supfu : u# �1; 1½ �g: This value is a limit of values for
which u# �1; 1½ �; therefore, because of closeness, a�# �1; 1½ �.

By transitivity, if u#a�, then we have u# �1; 1½ �. By definition of a�, if
u > a�, then we cannot have u# �1; 1½ �. Thus, we have:

u# �1; 1½ � if and only if u#a�: (7)

� Similarly, because of consistency with common sense, we have �1; 1½ �#u
when 1 # u. Let us denote aþ ¼def inffu : �1; 1½ �#ug: This value is a limit of
values for which �1; 1½ �#u; therefore, because of closeness, �1; 1½ �#aþ.

By transitivity, if aþ#u, then we have �1; 1½ �#u. By definition of aþ, if
u < aþ, then we cannot have �1; 1½ �#u. Thus, we have:

�1; 1½ �#u if and only if aþ#u: (8)

(3) Let us now compare two general intervals:

~u1 � D1; ~u1 þ D1½ � and ~u2 � D2; ~u2 þ D2½ �:

There are three possible cases that we will consider one by one: when D1 =D 2, when
D1< D 2, and whenD2 < D1.
� When D1 = D2, then for c; c½ � ¼ �D1;D1½ � ¼ �D2;D2½ �, additivity indicates that:

~u1 � D1; ~u1 þ D1½ �# ~u2 � D2; ~u2 þ D2½ � if and only if ~u1# ~u2:

Therefore, in this case, the proposition is proven.
� Let us now consider the case when D1 < D2. Then, for:

c; c½ � ¼ ~u2 � D1; ~u2 þ D1½ �;
additivity indicates that:

~u1 � D1; ~u1 þ D1½ �# ~u2 � D2; ~u2 þ D2½ � if and only if

~u1 � ~u2# � D2 � D1ð Þ;D2 � D1½ �: (9)

By applying scale-invariance with c ¼ D2 � D1 > 0, we conclude that:

~u1 � ~u2# � D2 � D1ð Þ;D2 � D1½ � if and only if ~u1 � ~u2

D2 � D1
# �1; 1½ �: (10)

Because of (7), this inequality is, in its turn, equivalent to:

~u1 � ~u2

D2 � D1
#a�: (11)

Multiplying both sides of this inequality by the positive number D2 � D1, we
obtain an equivalent inequality:
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~u1 � ~u2#a� � D2 � a� � D1; (12)

i.e. equivalently,

~u1 þ a� � D1# ~u2 þ a� � D2: (13)

Thus, from (9) to (13), we conclude that here, indeed:

~u1 � D1; ~u1 þ D1½ �# ~u2 � D2; ~u2 þ D2½ � if and only if
~u1 þ a� � D1# ~u2 þ a� � D2: (14)

� To complete the proof, we need to consider the case when D2 < D1. Then, for
c; c½ � ¼ ~u1 � D2; ~u1 þ D2½ �, additivity indicates that:

~u1 � D1; ~u1 þ D1½ �# ~u2 � D2; ~u2 þ D2½ � if and only if

� D1 � D2ð Þ;D1 � D2½ �# ~u2 � ~u1: (15)

By applying scale-invariance with c ¼ D1 � D2 > 0, we conclude that:

� D1 � D2ð Þ;D1 � D2½ �# ~u2 � ~u1 if and only if �1; 1½ �# ~u2 � ~u1

D1 � D2
: (16)

Because of (8), this inequality is, in its turn, equivalent to:

aþ#
~u2 � ~u1

D1 � D2
: (17)

Multiplying both sides of this inequality by the positive number D1 � D2, we
obtain an equivalent inequality:

aþ � D1 � aþ � D2# ~u2 � ~u1; (18)

i.e. equivalently,

~u1 þ aþ � D1# ~u2 þ aþ � D2: (19)

Thus, from (15) to (19), we conclude that here indeed:

~u1 � D1; ~u1 þ D1½ �# ~u2 � D2; ~u2 þ D2½ � if and only if

~u1 þ aþ � D1# ~u2 þ aþ � D2: (20)

So, in all three cases, the proposition is confirmed.
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